

# Intensive Care: First 48 hours

Dr Gethin Pugh

Consultant in Anaesthetics & Intensive Care Medicine

**SWUK Regional Education Day | Bristol | November 2018** 

# **ICU MANAGEMENT: FIRST 48 HOURS**



- Key Features of First 48 hours of Burns ICU:
- Highly dynamic phase of Burns management
- Multi-system response to thermal Injury
- On-going fluid resuscitation can exacerbate clinical picture
- Surgical Intervention and dressing changes

#### **LEARNING OUTCOMES**



- Framework for ICU Management following Major Burn Injury
- Airway Considerations & Ventilation Strategy
- Changes in Cardiovascular parameters
  - Practical guidance on use of invasive lines & infusions
- Management of Hyper-metabolic state
  - Temperature control & nutrition in presence of SIRS
- Considerations for sedation and analgesia

#### **AIRWAY CONSIDERATIONS**



Fluid Resuscitation will exacerbate oedema of head & neck

• **Tube:** Endotracheal tubes can be easily displaced

•**Teeth:** Record the length of ETT at TEETH

• **Travel:** Review location of tube at frequently / procedures

•**Ties:** Re-adjust Tube ties as required

Anticipate that re-intubation may be very difficult

#### **VENTILATION STRATEGY**



- Lung Protective Strategy:
  - Tidal Volume < 6mls per kg Ideal Body Weight</li>
  - Plateau pressure < 30 cmH<sub>2</sub>O
- Can be complicated by Acute Respiratory Distress Syndrome
- Ventilation difficulties may also be exacerbated by:
  - Fluid resuscitation
  - Bronchorrhoea & bronchospam smoke inhalation
  - Underlying Chronic Lung disease

#### **CARDIOVASCULAR STATUS**



- Anticipate elevated Heart Rate up to 2 x normal
- Cardiac Output can increase by up to 150-200%
- Feature of Hyper-metabolic state following Acute Burn Injury
- Massive fluid loss from intravascular space:
  - Lactic Acidosis & oliguria secondary to hypovolemia
- Fluid resuscitation is a cornerstone of management
  - Parkland formula provides a guide only
  - Aim for Urine Output 0.5-1 ml / Kg / hour & review
  - May also require vasopressor support

#### PRACTICAL CONSIDERATIONS



- Measure Skin & Core Temperatures
- •Aim to keep differences in values < 3° C to optimise skin perfusion
- Arterial and Central Venous Access are essential
- Insert lines through un-burned skin where possible
- Beware displacement of IV lines with emergent oedema
  - Consider use of longer lines
  - Femoral site is often spared as a site for Central access
  - •Consider use of 5 x CVC lines where available

# **SEDATION & ANALGESIA**







#### **SEDATION & ANALGESIA**



- Multimodal approach
- Combination of short and longer acting agents
- Sedation can be challenging in presence of SIRS following burns
- Step wise approach and daily review of sedation & analgesia
  - Anticipate changes following surgical intervention
  - Propofol can unmask underlying hypovolemia
- Use of Remifentanil infusions for dressing changes and rolling

# **HYPERMETABOLISM & NUTRITION**









## HYPERMETABOLISM & NUTRITION



- Burn Injury >20% associated with Hypermetabolic Response
- Increased catabolism
  - Commence NG feeding early post injury
  - Consider NJ feeding where possible
- Hyperglycaemic Insulin resistant state requiring insulin
- Increased Body Temperature
  - Core Temperature of up to 38.5° C can be considered normal
  - Secondary to massive SIRS response

#### HYPERPYREXIA MANAGEMENT



- •Defined as a Core > 39° C
- Hyperpyrexia, even for short periods can be highly detrimental
- •If Core Temperature > 39° C:
  - Septic Screen including Blood Cultures
  - Check CK levels and Renal profile
  - Antipyretics
  - Consider Ice Packs to Axillae and refrigeration NG feed
  - Consider opening Burns dressings where possible

#### HYPERPYREXIA MANAGEMENT



- Defined as a Core > 39° C
- Hyperpyrexia, even for short periods can be highly detrimental
- •If Core Temperature > 40° C for more than 6 consecutive hours
  - Commence active cooling with CVVHDF
- •If Core Temperature > 41° C for more than 2 consecutive hours
  - Commence active cooling with CVVHDF
- •Discontinue active cooling measures when temperature < 38.5° C

# **S**EPSIS



- Burns patients are vulnerable to infection
  - Skin Loss
  - Immunosuppression following Thermal Injury
- Massive SIRS response makes diagnosis challenging
- High Index of suspicion in all cases following Acute Burn Injury
- •Consider Sepsis if Temp > 39° C or < 36.5° C
- Use of Infection control measure essential
- Isolate patients in single cubicles were possible

# **SUMMARY & KEY RECOMMENDATIONS**



- Complex Multisystem response following Acute Burn Injury
  - Fluid resuscitation cornerstone of ICU management
- •Fluid & therapeutic intervention can exacerbate clinical picture
- Multimodal approach to sedation & analgesia
  - Use of infusions to minimise cardiovascular instability
- Raised Core Temperature common feature following burn injury
  - High Index of suspicion for occult sepsis
  - Use of active cooling measures where required

## **FURTHER INFORMATION**



- Management of first 48 hours following Burn Injury SWUK
- ABA Guidance on Sepsis in Burn population



